11 research outputs found

    Classification of Radiology Reports Using Neural Attention Models

    Full text link
    The electronic health record (EHR) contains a large amount of multi-dimensional and unstructured clinical data of significant operational and research value. Distinguished from previous studies, our approach embraces a double-annotated dataset and strays away from obscure "black-box" models to comprehensive deep learning models. In this paper, we present a novel neural attention mechanism that not only classifies clinically important findings. Specifically, convolutional neural networks (CNN) with attention analysis are used to classify radiology head computed tomography reports based on five categories that radiologists would account for in assessing acute and communicable findings in daily practice. The experiments show that our CNN attention models outperform non-neural models, especially when trained on a larger dataset. Our attention analysis demonstrates the intuition behind the classifier's decision by generating a heatmap that highlights attended terms used by the CNN model; this is valuable when potential downstream medical decisions are to be performed by human experts or the classifier information is to be used in cohort construction such as for epidemiological studies

    Conventional and Advanced Imaging of Spine Oncologic Disease, Nonoperative Post-treatment Effects, and Unique Spinal Conditions

    No full text
    In this review, we discuss the imaging features of diseases and conditions ranging from neoplastic to nonoperative post-treatment effects to unique conditions of the spine. Additionally, advanced imaging may increase diagnostic certainty in cases where conventional imaging characteristics of benign lesions and malignant pathology are variable

    Advanced diagnostic imaging utilization during emergency department visits in the United States: A predictive modeling study for emergency department triage.

    No full text
    BackgroundEmergency department (ED) crowding is associated with negative health outcomes, patient dissatisfaction, and longer length of stay (LOS). The addition of advanced diagnostic imaging (ADI), namely CT, ultrasound (U/S), and MRI to ED encounter work up is a predictor of longer length of stay. Earlier and improved prediction of patients' need for advanced imaging may improve overall ED efficiency. The aim of the study was to detect the association between ADI utilization and the structured and unstructured information immediately available during ED triage, and to develop and validate models to predict utilization of ADI during an ED encounter.MethodsWe used the United States National Hospital Ambulatory Medical Care Survey data from 2009 to 2014 to examine which sociodemographic and clinical factors immediately available at ED triage were associated with the utilization of CT, U/S, MRI, and multiple ADI during a patient's ED stay. We used natural language processing (NLP) topic modeling to incorporate free-text reason for visit data available at time of ED triage in addition to other structured patient data to predict the use of ADI using multivariable logistic regression models.ResultsAmong the 139,150 adult ED visits from a national probability sample of hospitals across the U.S, 21.9% resulted in ADI use, including 16.8% who had a CT, 3.6% who had an ultrasound, 0.4% who had an MRI, and 1.2% of the population who had multiple types of ADI. The c-statistic of the predictive models was greater than or equal to 0.78 for all imaging outcomes, and the addition of text-based reason for visit information improved the accuracy of all predictive models.ConclusionsPatient information immediately available during ED triage can accurately predict the eventual use of advanced diagnostic imaging during an ED visit. Such models have the potential to be incorporated into the ED triage workflow in order to more rapidly identify patients who may require advanced imaging during their ED stay and assist with medical decision-making

    How is the Doctor Feeling? ICU Provider Sentiment is Associated with Diagnostic Imaging Utilization

    No full text
    The judgment of intensive care unit (ICU) providers is difficult to measure using conventional structured electronic medical record (EMR) data. However, provider sentiment may be a proxy for such judgment. Utilizing 10 years of EMR data, this study evaluates the association between provider sentiment and diagnostic imaging utilization. We extracted daily positive / negative sentiment scores of written provider notes, and used a Poisson regression to estimate sentiment association with the total number of daily imaging reports. After adjusting for confounding factors, we found that (1) negative sentiment was associated with increased imaging utilization (p < 0.01), (2) sentiment's association was most pronounced at the beginning of the ICU stay (p < 0.01), and (3) the presence of any form of sentiment increased diagnostic imaging utilization up to a critical threshold (p < 0.01). Our results indicate that provider sentiment may clarify currently unexplained variance in resource utilization and clinical practice.National Institutes of Health (U.S.) (Grant NTP-T32 EB 001680)National Institutes of Health (U.S.) (Grant AMNTP T90 DA 22759

    Using Natural Language Processing of Free-Text Radiology Reports to Identify Type 1 Modic Endplate Changes

    No full text
    Electronic medical record (EMR) systems provide easy access to radiology reports and offer great potential to support quality improvement efforts and clinical research. Harnessing the full potential of the EMR requires scalable approaches such as natural language processing (NLP) to convert text into variables used for evaluation or analysis. Our goal was to determine the feasibility of using NLP to identify patients with Type 1 Modic endplate changes using clinical reports of magnetic resonance (MR) imaging examinations of the spine. Identifying patients with Type 1 Modic change who may be eligible for clinical trials is important as these findings may be important targets for intervention. Four annotators identified all reports that contained Type 1 Modic change, using N = 458 randomly selected lumbar spine MR reports. We then implemented a rule-based NLP algorithm in Java using regular expressions. The prevalence of Type 1 Modic change in the annotated dataset was 10%. Results were recall (sensitivity) 35/50 = 0.70 (95% confidence interval (C.I.) 0.52-0.82), specificity 404/408 = 0.99 (0.97-1.0), precision (positive predictive value) 35/39 = 0.90 (0.75-0.97), negative predictive value 404/419 = 0.96 (0.94-0.98), and F1-score 0.79 (0.43-1.0). Our evaluation shows the efficacy of rule-based NLP approach for identifying patients with Type 1 Modic change if the emphasis is on identifying only relevant cases with low concern regarding false negatives. As expected, our results show that specificity is higher than recall. This is due to the inherent difficulty of eliciting all possible keywords given the enormous variability of lumbar spine reporting, which decreases recall, while availability of good negation algorithms improves specificity

    Using Natural Language Processing of Free-Text Radiology Reports to Identify Type 1 Modic Endplate Changes

    No full text
    Electronic medical record (EMR) systems provide easy access to radiology reports and offer great potential to support quality improvement efforts and clinical research. Harnessing the full potential of the EMR requires scalable approaches such as natural language processing (NLP) to convert text into variables used for evaluation or analysis. Our goal was to determine the feasibility of using NLP to identify patients with Type 1 Modic endplate changes using clinical reports of magnetic resonance (MR) imaging examinations of the spine. Identifying patients with Type 1 Modic change who may be eligible for clinical trials is important as these findings may be important targets for intervention. Four annotators identified all reports that contained Type 1 Modic change, using N = 458 randomly selected lumbar spine MR reports. We then implemented a rule-based NLP algorithm in Java using regular expressions. The prevalence of Type 1 Modic change in the annotated dataset was 10%. Results were recall (sensitivity) 35/50 = 0.70 (95% confidence interval (C.I.) 0.52-0.82), specificity 404/408 = 0.99 (0.97-1.0), precision (positive predictive value) 35/39 = 0.90 (0.75-0.97), negative predictive value 404/419 = 0.96 (0.94-0.98), and F1-score 0.79 (0.43-1.0). Our evaluation shows the efficacy of rule-based NLP approach for identifying patients with Type 1 Modic change if the emphasis is on identifying only relevant cases with low concern regarding false negatives. As expected, our results show that specificity is higher than recall. This is due to the inherent difficulty of eliciting all possible keywords given the enormous variability of lumbar spine reporting, which decreases recall, while availability of good negation algorithms improves specificity
    corecore